Microsoft Word Field Maths Tutorial

1Introductory Notes

1Using This Document

1Viewing Fields

1Updating and Recalculating Fields

1Internationalization Issues

3Formula Field Syntax

3Formula Field Arithmetic Operators

4Formula Field Comparison Operators

4Formula Field Functions

5Formula Field Logical Functions

6AND & OR: Testing Multiple Logical Numeric Expressions

6Testing Negative Numbers

6Testing and Returning Text Strings with Logical Functions in Bookmarks

7Calculations in Word Forms

8Referencing Cells In A Table

8Identifying Cell Addresses

10Referencing Cells Containing Numbers

10Referencing Cells Containing Text

10Reference Operators

10Referencing an Entire Row or Column

11Referencing Adjacent Cells in a Row or Column

11Exclude Numbers in Table Heading Cells from Calculations

12Relative Referencing in Tables

13Testing and Returning Cell Contents in Tables

13Reference Table Cells from Outside a Table

14Referencing Row and Column Totals from Outside a Table

14Formatting Numeric Field Results

14Handling +ve, -ve and 0 Values

15Ordinal Numbering

15Expressing Numbers as Words

15Expressing Numbers as Numbers and Fractions

15Rounding Numbers to the Nearest Multiple

15Rounding Numbers Up or Down

16Even Rounding

16Parse Numbers Separated by +, -, / or : Characters

17Scientific Notation

17Logarithms

17Trigonometry

17Calculate Horizon Distances Using Word Fields

18Financial Calculations

18Financial Calculation Algorithms

19Basic Financial Calculation Fields

19Interactive Worked Examples

Introductory Notes

This document shows how to do a range of field-based calculations using Microsoft Word, versions 97 and later, using field coding instead of macros. Whilst macros are sometimes simpler to use (for those who know how to use them), using field codes avoids some of the security issues associated with macros.

Using This Document

In this document, the bookmarks used to create an example may be re-used in other examples. A side effect of this is that the calculated dates and times in the examples will display a result based on the last-bookmarked entry for each reference when this document is first opened. This can be corrected by updating the affected fields and would not appear in documents where the bookmark names are not re-used.

Viewing Fields

To view the fields in this document, I recommended that you toggle field shading on. You can do this via Tools|Options|View (Word 97-2003) or Word Options|Advanced>Show Document Content (Word 2007) and, under ‘Show’, selecting the ‘Always’ or ‘When selected’ options. You’ll probably find the ‘Always’ option works best. Doing this has no effect on the printed output but makes the fields easier to work with on-screen.

To see the inner workings of any field, select it and press Shift-F9. When you’re done, pressing Shift-F9 again will toggle the display back to showing the field’s results. Alternatively, if you press F9, the field will update and toggle the display back to showing the field’s results in one go.

Many of the date and time field examples in this document have been laid out with line feeds to better show their structure when the field code is toggled ‘on’. The line feeds can be deleted.

A syntax error occurs with some fields while they’re in this document because the fields concerned are designed for use in a mailmerge main document, which this document isn’t.

Updating and Recalculating Fields

To update/recalculate a given field, simply select in and press F9. Most will update without any further action on your part, but the interactive examples will prompt you for input(s). This introduces an important issue with calculations in Word: unlike Excel, except when used in Form Fields in protected documents with the ‘calculate on exit’ attribute set, Word fields cannot be set to automatically calculate whenever their source data changes – you must do something to cause a re-calculation to occur. Printing a document is another way to force a document’s fields to recalculate – provided you have the ‘Update Fields’ option checked under Tools|Options|Print.

Internationalization Issues
Many of the fields in this document use comma separators for IF tests, MOD statements and the like. To use the fields in regions that use commas as decimal separators, the commas in the affected parts of the field codes need to be changed to semi-colons. Taking the first ‘Rounding Numbers Up or Down’ field code (Page 15) as an example, the field code as supplied reads:
{=INT(SUM(5.5,6.6,7.7)+IF(MOD(SUM(5.5,6.6,7.7),1)>0,1,0))}
The modified field for a region requiring semi-colon separators would read:
{=INT(SUM(5.5;6.6;7.7)+IF(MOD(SUM(5.5;6.6;7.7);1)>0;1;0))}
(note the ; semi-colons)
Formula Field Syntax

The syntax for a formula field is:

{= Formula [Bookmark] [\# Numeric Picture]}
where-

· the field braces ‘{}’ are created via Ctrl-F9 or via the Formula command on the Table menu to insert an = (Formula) field in a table or in other text (see “Perform calculations in a table” in Word’s Help file for more details). Typing the braces is not sufficient to create a field;

· the first character in the field is an equal sign ‘=’ (although a space followed by an equal sign is also valid);

· a formula, which may include a bookmark reference, follows the equal sign; and

· may incorporate a numeric picture switch.

A formula can use any combination of numbers, bookmarked numbers, fields that output numbers. Any of Word’s numeric operators and functions can also be used.

Note: Some of the examples in this document are mere text representations of field coding, using typed braces ‘{}’ rather than actual field coding with field braces. All such examples are still coded the same as true fields and can be converted to such by replacing the typed braces with field braces (see above).

Formula Field Arithmetic Operators

To perform basic arithmetic operations such as addition, subtraction, or multiplication; combine numbers; and produce numeric results, you can use any combination of the following arithmetic operators with numeric values.

	Operation
	Operator

	Addition
	+

	Subtraction
	–

	Multiplication
	*

	Division
	/

	Percentage
	%

	Powers and Roots
	^

To add one value to another, use a field coded like:

{=3+2} = 5
To subtract one value from another, use a field coded like:
{=3-2} = 1
To multiply one value by another, use a field coded like:
{=3*2} = 6
To divide one value by another, use a field coded like:
{=3/2} = 1.5
To find the percentage of a value, use a field coded like:
{=3*2%} = 0.06
To find the square of a value, use a field coded like:

{=3^2} = 9
To find the square root of a value, use a field coded like:
{=3^(1/2)} = 1.73
Formula Field Comparison Operators

You can compare two numeric values with any of the following operators. The result of such a comparison is a logical value, either TRUE (1) or FALSE (0)

	Operation
	Operator

	Equal to
	=

	Not equal to
	<>

	Less than
	<

	Less than or equal to
	<=

	Greater than
	>

	Greater than or equal to
	>=

To test whether two values are equal, use a field coded like:

{=3=2+1} or {=NOT(3<>2+1)}
To test whether two values are not equal, use a field coded like:

{=3<>2+1}
To test whether one value is less than another, use a field coded like:

{=3<2+1}
To test whether one value is greater another, use a field coded like:

{=3>2+1}
To test whether one value is greater than or equal to another, use a field coded like:

{=3>=2+1}
(note that this is really no different than testing whether one value is less than another)
To test whether one value is less than or equal to another, use a field coded like:

{=3<=2+1}
(note that this is really no different than testing whether one value is greater than another)
Formula Field Functions

A = (Formula) field can use values returned by the following functions:

	Function
	Returns

	ABS(x)
	The positive value of a number or formula, regardless of its actual positive or negative value. For example, {=ABS(-5)} and {=ABS(5)} both return 5.

	AVERAGE()
	The average of a list of values. For example, {=AVERAGE(1,2,3)} returns 2.

	COUNT()
	The number of items in a list. For example, {=COUNT(1,2,3)} returns 3.

	DEFINED(x)
	The value 1 (true) if the expression x is valid, or the value 0 (false) if the expression cannot be computed. For example, {=DEFINED(1/0)} returns =DEFINED(1/0).

	FALSE
	The value 0. For example, {=FALSE} returns 0.

	INT(x)
	The numbers to the left of the decimal place in the value or formula x. For example, {=INT(5.15)} returns 5.

	MIN()
	The smallest value in a list. {=MIN(1,2,3)} returns 1.

	MAX()
	The largest value in a list. {=MAX(1,2,3)} returns 3.

	MOD(x,y)
	The remainder that results from dividing the value x by the value y a whole number of times. For example, {=MOD(5.15,2)} returns 1.15.

	PRODUCT()
	The result of multiplying a list of values. For example, {=PRODUCT(2,4,6,8)} returns 384.

	ROUND(x,y)
	The value of x rounded to the specified number of decimal places y; x can be either a number or the result of a formula. For example, {=ROUND(123.456,2)} returns 123.46, {=ROUND(123.456,1)} returns 123.5, {=ROUND(123.456,0)} returns 123 and {=ROUND(123.456,-1)} returns 120.

	SIGN(x)
	The value 1 if x is a positive value, or the value –1 if x is a negative value. For example, {=SIGN(-123)} returns -1 and {=SIGN(123)} returns 1.

	SUM()
	The sum of a list of values or formulae. For example, {=SUM(1,2,3)} returns 6.

	TRUE
	The value 1. For example, {=TRUE} returns 1.

Note: Functions with empty parentheses can accept any number of arguments separated by commas (,) or semicolons (;). Arguments can be numbers, formulae, or bookmark names.

Formula Field Logical Functions

	Function
	Description

	AND(x,y)
	Returns the value 1 if the logical expressions ‘x’ and ‘y’ are both true, or the value 0 (zero) if either expression is false. For example, {=AND(5=2+3,3=5-2)} returns 1.

	OR(x,y)
	Returns the value 1 (true) if either or both logical expressions ‘x’ and ‘y’ are true, or the value 0 (zero) (false) if both expressions are false. For example, {=OR(5=2+3,3=5-2)} returns 1.

	NOT(x)
	Reverses the logic of its argument. Returns the value 0 (false) if the logical expression ‘x’ is true, or the value 1 (true) otherwise. For example, to test whether two values are equal, you could use {=NOT(3<>2+1)}, which is equivalent to {=(3=2+1)} and returns 1.

	IF(x,y,z)
	Specifies a logical test to perform, wher ‘x’ is any value or expression that can be evaluated to TRUE or FALSE, ‘y’ is the value that is returned if ‘x’ evaluates to TRUE, and ‘z’ is the value that is returned if ‘x’ evaluates to FALSE. For example, IF(5=2+3,2*3,2/3) returns 6 and IF(5<>2+3,2*3,2/3) returns 0.667. See Referencing Cells Containing Text for IF tests involving text strings and nulls.

AND & OR: Testing Multiple Logical Numeric Expressions

Word’s AND and OR functions can only test two logical numeric expressions at a time, and can’t directly test text strings at all. For testing more than two logical numeric expressions, you can nest multiple AND or OR functions, but there is a better way:

· The logical funtion =AND(AND(5=2+3,3=5-2),2=5-3), which returns 1, can just as readily be expressed as =(5=2+3)*(3=5-2)*(2=5-3), which also returns 1 and avoids the AND function’s limitations.

· The logical funtion =OR(OR(5=2+3,3=5-2),2=5-3), which returns 1, can just as readily be expressed as =((5=2+3)+(3=5-2)+(2=5-3)>0), which also returns 1 and likewise avoids to the OR function’s limitations.

· Word lacks an exclusive OR (XOR) field function – for testing whether exactly one expression is true. You can simulate one, though, by use a formula like =((5=2+3)+(3=5-2)+(2=5-3)=1), which returns 0 here because more than one test expression is true. Indeed, you can expand this to test whether any exact number of expressions is true, by replacing the final ‘1’ with the required number of true expressions. Naturally, if all expressions must be true, you’ve created the equivalent of an AND function …

Testing Negative Numbers

Word doesn’t handle negative numbers correctly in field calculations. Logically, one would expect a field construction like:
{QUOTE{ASK Val Number }{IF{Val}> -5 True False}}

-5-5

IFQUOTE> -5 True False
False

False

to work, but it doesn’t!. For example, the IF test returns ‘True’ for ‘–6’ and ‘false for ‘-1’, whereas it should return ‘False’ and ‘True’, respectively. To get the correct result, you need to add a value corresponding to the negative positive value to the value being tested, then compare the result against 0, as in:
{QUOTE{ASK Val Number }{IF{={Val}+5}> 0 True False}}

-5-5

IFQUOTE+5
0
> 0 True False
False

False

Testing and Returning Text Strings with Logical Functions in Bookmarks

You can use an IF field to test whether two text strings match, and output a variable result accordingly, as in:
{IF{BkMrk1}= {BkMrk2} "BkMrk1 = BkMrk2" "BkMrk1 <> BkMrk2"} or
{IF{BkMrk}= "True Text" "BkMrk is True Text" "BkMrk is not True Text"} or
{IF “Hello World” = “Hello World” True False}
In fact, you can use any of the Formula Field Comparison Operators in IF fields to test two text strings, and output a variable result accordingly, as in:
{IF{BkMrk1}> {BkMrk2} "BkMrk1 > BkMrk2" "BkMrk1 <= BkMrk2"} and
{IF{BkMrk}=> "True Text" "BkMrk => True Text" "BkMrk < True Text"}
When you use comparison operators this way, Word compares each character in each string. The field’s output is based on the results of that comparison.

As well, you can test whether a string contains a specified sub-string at a specified position:
{QUOTE{ASK String String}{IF{String} = "?AB*" True False}} AABAAABA

IFQUOTE = "?AB*" True False
True

True

using ‘?’ characters to modify the starting position of the sub-string in the test string and a ‘*’ to disregard the rest of the string after the sub-string.

You can also nest IF fields to construct a test like:
{IF{BkMrk1}= {BkMrk2} {IF{BkMrk3}= {BkMrk4} {IF{BkMrk5}= {BkMrk6} "True Text" "False Text 3"} "False Text 2"} "False Text 1"}
Note: Word’s IF fields can be nested 20 levels deep, though I’m not sure why you’d want to …

As previously mentioned, you can’t use AND or OR fields directly to test text strings, but you can achieve similar results using IF fields.

· For a simple AND test with text strings you could use:
{IF{={IF{REF BkMrk1}= "True Text" 1 0}*{IF{REF BkMrk2}}= "True Text" 1 0}= 1 “Both conditions met” “At least one condition not met”}
or
{IF{={IF BkMrk1 = "True Text" 1 0}*{IF BkMrk2 = "True Text" 1 0}}= 1 “Both conditions met” “At least one condition not met”}
So, for a multi-termed AND test with text strings you could use:
{IF(={IF{REF BkMrk1}= {REF BkMrk2} 1 0}*{IF{REF BkMrk3}= {REF BkMrk4} 1 0}*{IF{REF BkMrk5}= {REF BkMrk6} 1 0}}= 1 “All conditions met” “At least one condition not met”}
· For a simple OR test with text strings you could use:
{IF{={IF{REF BkMrk1}= "True Text" 1 0}+{IF{REF BkMrk2}= "True Text" 1 0}}> 0 “At least one condition met” “Neither condition met”}
or
{IF{={IF BkMrk1 = "True Text" 1 0}+{IF BkMrk2 = "True Text" 1 0}}> 0 “At least one condition met” “Neither condition met”}
So, for a multi-termed OR test with text strings you could use:
{IF{={IF{REF BkMrk1}= {REF BkMrk2} 1 0}+{IF{REF BkMrk3}= {REF BkMrk4} 1 0}+{IF{REF BkMrk5}= {REF BkMrk6} 1 0}}> 0 “At least one condition met” “No conditions met”}
· For a simple XOR test with text strings you could use:
{IF{={IF{REF BkMrk1}= "True Text" 1 0}+{IF{REF BkMrk2}}= "True Text" 1 0}= 1 “Exactly one condition met” “Not exactly condition met”}
or
{IF{={IF BkMrk1 = "True Text" 1 0}+{IF BkMrk2 = "True Text" 1 0}}= 1 “Exactly one condition met” “Not exactly condition met”}
So, for a multi-termed XOR test with text strings you could use:
{IF{={IF{REF BkMrk1}= {REF BkMrk2} 1 0}+{IF{REF BkMrk3}= {REF BkMrk4} 1 0}+{IF{REF BkMrk5}= {REF BkMrk6} 1 0}}= 1 “Exactly one condition met” “Not exactly condition met”}
As with the numeric XOR tests discussed previously, you can expand this to test whether any exact number of expressions is true, by replacing the final ‘1’ with the required number of true expressions.

Calculations in Word Forms

In all Word versions, using a formfield to perform calculations based on the results of other formfields that perform calculations causes strange things to happen.

In simple terms, there’s a bug that results in the target formfield’s value duplicating, not just replicating, the source formfield’s value.

Here’s a set of formfields (named Text1 to Text9) and formula fields that demonstrate the issues:

(a) 1 * 2 = 2 FORMTEXT

2
 using a calculation formfield with a formula coded as =Text1*Text2;

(b) 3 * 4 = 12 FORMTEXT

12
 using a calculation formfield with a formula coded as =Text4*Text5;

(c) 22 FORMTEXT

22
 * 1212 FORMTEXT

1212
 = 26933333064 FORMTEXT

26933333064
 using calculation formfields coded as =Text3, =Text4 and =Text7*Text8, respectively

(d) Here’s the same cross referencing and calculation from the 3rd line using formula fields:
2 * 12 = 2=*12

24 using formula fields coded as {Text3}, {Text6} and {={Text3}*{Text6}}, respectively.

Be careful, though, because you’ll get:

22=*12

264, using a formula field coded as {={=Text3}*{=Text6}}, or

26664 using a formula field coded as {=Text3*Text6}.

Note: If you want to play around with the above fields, you’ll need to select & unlock them (Ctrl-Shift-F11), copy them out to another document, then protect that document for forms. Mailmerge Mergefields elsewhere in this document prevent the formfields working in the normal way.

Notice how, at (c) above, just referring to the ‘Text3 and ‘Text4’ formfields results in a duplication of those formfields’ values. Those duplications are then carried over to the 3rd formfield on that line. Notice too how careful coding of the formula fields at (d) above can avoid the calculation formfield duplications.

Microsoft has published various workarounds for this (see, for example, MSKB article 211253), but the surest way to avoid the calculation formfield pitfalls is to use formula fields instead. There’s nothing calculation formfields can calculate that you can’t do just about as easily with a formula field.

When referencing DropDown formfields in calculations, use a formulation like:

{={DropDown1}+{DropDown2}+{DropDown3}+{DropDown4}} or

{={REF DropDown1}+{REF DropDown2}+{REF DropDown3}+{REF DropDown4}}
Referencing Cells In A Table

Identifying Cell Addresses

Word supports tables with up to 63 columns and an apparently unlimited rows (provided you keep within the 32Mb document text limit). Unlike Excel, however, Word doesn’t automatically indicate which cell your cursor is in. This can be difficult to work out in a large table, especially when you start working with merged cells. The following macro outputs the address of the table's selected cell range and the table’s last cell address on Word’s Status Bar:

Sub CellRange()
Dim StrAddr As String
' This macro displays the address of a table's selected cell range
' and the table’s last cell address on Word's Status Bar (Word 2010 & earlier)
' or in a Message Box (Word 2013 & later)
With Selection
 If .Information(wdWithInTable) = True Then
 StrAddr = "The selected "
 If .Cells.Count = 1 Then
 StrAddr = StrAddr & "cell address is: "
 Else
 StrAddr = StrAddr & "cells span: "
 End If
 StrAddr = StrAddr & ColAddr(.Cells(1).ColumnIndex) & .Cells(1).RowIndex
 If .Cells.Count > 1 Then
 StrAddr = StrAddr & ":" & ColAddr(.Characters.Last.Cells(1).ColumnIndex) & _
 .Characters.Last.Cells(1).RowIndex
 End If
 With .Tables(1).Range
 StrAddr = StrAddr & ". The table's last cell is at: " & _
 ColAddr(.Cells(.Cells.Count).ColumnIndex) & .Cells(.Cells.Count).RowIndex
 End With
 Else
 StrAddr = "The selection is not in a table!"
 End If
End With
StatusBar = StrAddr
End Sub

Function ColAddr(i As Long) As String
If i > 26 Then
 ColAddr = Chr(64 + Int(i / 26)) & Chr(64 + (i Mod 26))
Else
 ColAddr = Chr(64 + i)
End If
End Function
To make the macro available for use in your documents:

· Copy the above block of code to the clipboard

· Press Alt-F11 to open up Word’s Visual Basic Editor (vbe).

· In the VBA ‘Project’ window, click on the “Normal” project and expand it if it’s not already expanded.

· If the “Normal” project has a branch named “Modules” and you’re happy to add the code to an existing code module, expand it, then skip the next step

· If the “Normal” project doesn’t have a branch named “Modules”, or you want to create a new code module, use Insert|Module to add a code module.

· Select your code module and paste the contents of the clipboard into it.

· Press Alt-F11 again to switch back to Word’s document window

To use the macro:

· Position the cursor in the cell for which you want the address information;

· Press Alt-F8 to open Word’s macros dialogue box;

· Click on the macro named ‘CellAddress’; then click on ‘Run’.

For regular use, you could add the macro to a toolbar (Word 2000-2003) or to the Quick Access Toolbar (Word 2007 & later). For instructions on how to do this, go to:
http://www.gmayor.com/installing_macro.htm.

Referencing Cells Containing Numbers

When you use cell references in a table, you reference table cells using an alpha‑numeric column‑row format (eg A1, A2, B1, B2, and so on). Cell references in Microsoft Word, unlike those in Microsoft Excel, are always absolute and are not shown with dollar signs. For example, referring to a cell as A1 in Word is the same as referring to a cell as A1 in Excel.

Referencing Cells Containing Text

Alpha‑numeric column‑row cell referencing does not work with text strings, including dates and other mixed alpha-numeric character strings. Consider the following:

	21/03/2000
	0.003500
	Here the numbers are divided

	21 March 2000
	2021
	Here the numbers are added and the text is ignored

	((15+14)*2-10)/6
	8
	Here the expression is evaluated. This might actually be useful sometimes!

	5 dogs, 2 birds and 3 cats
	10
	Here the numbers are added and the text is ignored

	Hello World
	0
	Here the text is ignored and 0 is returned

To refer to a character string in a cell, the character string (not the cell itself) must be individually bookmarked and the bookmark referred to in the reference. See Testing Or Returning Cell Contents In Tables below.

Reference Operators

You can combine ranges of cells in a table, or across tables, for calculations with either or both of the following reference operators:

	Operator
	Description
	Example

	: (Colon)
	Range operator. Returns all cells between and including the two reference cells
	=SUM(A1:A5)

	, (Comma)
	Union operator. Combines multiple discontiguous cell ranges in one reference
	=SUM(A1:A5,A10:A15,A20)

Referencing an Entire Row or Column

You can reference an entire row or column in a calculation.

· Use a row or column range that includes only the number or letter that refers it. For example, 1:1 to reference the first row in the table, or A:A to reference the first column in the table. This form of referencing includes all the cells in the row or column, even if rows/columns are added or deleted later. Don’t do this within the row or column being referenced, though, or your formula will include itself in the evaluation (ie circular referencing), which will cause arithmetic errors that will increase every time the field updates.

· Use a range that identifies specific cells or ranges of cells. For example, for a 4-row table, D1:D4 refers to the cells on rows (1-4) in Column D. This form of referencing restricts the calculation to include only the particular cells. Adding or deleting cells later may require you to edit the calculation.

Referencing Adjacent Cells in a Row or Column

For analysing column/row contents within a table, Word offers the ABOVE, BELOW, LEFT and RIGHT parameters as arguments for the functions AVERAGE(), COUNT(), MAX(), MIN(), PRODUCT(), and SUM(). At first sight, these parameters would seem to imply that, when coupled with the functions mentioned, all of the cells ABOVE, BELOW, LEFT or RIGHT would be evaluated. Unfortunately, that’s not always the case and the behaviour across these functions is inconsistent, as indicated in the table below.

	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6
	6

	
	A
	5
	
	A
	5
	
	A
	5
	
	A
	5
	
	A
	5
	
	A
	5

	
	B
	4
	
	B
	4
	
	B
	4
	
	B
	4
	
	B
	4
	
	B
	4

	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3

	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1.2
	1.2
	2.63
	5
	5
	8
	3
	3
	6
	0
	0
	0
	0
	0
	0
	6
	6
	21

	{=AVERAGE(ABOVE)}
	{=COUNT(ABOVE)}
	{=MAX(ABOVE)}
	{=MIN(ABOVE)}
	{=PRODUCT(ABOVE)}
	{=SUM(ABOVE)}

What’s going on? The ABOVE, BELOW, LEFT or RIGHT parameters are including the last non-numeric cell before and all non-numeric cells after the last range containing numeric values in the range being evaluated (i.e. the shaded cells), but not the entire ABOVE, BELOW, LEFT or RIGHT range. When using COUNT on an empty column ABOVE, BELOW, LEFT or RIGHT the field returns the number of rows/columns. So, use these parameters with caution.

Exclude Numbers in Table Heading Cells from Calculations

One of the problems you can encounter when using formulae like {=SUM(ABOVE)} is that a heading that contains a number will be included in the calculation. There is a simple way around this, however. Consider the following table:

	List of 5 Items
	List of 5 Items

	1
	1

	2
	2

	3
	3

	4
	4

	5
	5

	15
	15

Notice how the number in the left-hand column’s heading is included in the column total, but not for the right-hand column. Yet both use the same {=SUM(ABOVE)} formula. The difference is that the right-hand column has another single-cell table nested in it. By putting the heading into a nested table, the heading is isolated from the calculations. An advantage this has over putting the heading in a separate table is that you can then use the ‘Heading rows repeat’ attribute to replicate the table heading on subsequent pages, if need be, without putting the headings into the page header.

Relative Referencing in Tables

The table below contains various Word formulae.

	16.27
	16QUOTE

\# $,0.00;-$,0.00;\‑
$16.00

	$1.00IF= 0 "" $32.27

$32.27
	1

1QUOTE

1SET ColA "A"
A1

1SET ColB "B"
B1

1SET ColC "C"
C1

A1=*B1+C1 \# $,0.00;-$,0.00
$292.59

$292.59

	1QUOTE
/2
0.5
"
a2=/2
1

2Set CellB "b/2
1
"
b2=/2
1

2Set CellC "c/2
1
"
c2=/2
1

a1=*b1+c1 \# $,0.00;-$,0.00
$292.59

$292.59

	7
	7QUOTE

\# $,0.00;-$,0.00;\‑
$7.00

	$14.00
	2

2QUOTE

2SET ColA "A"
A2

2SET ColB "B"
B2

2SET ColC "C"
C2

A2=*B2+C2 \# $,0.00;-$,0.00
$63.00

$63.00

	3QUOTE
/2
1.5
"
a4=/2
2

4Set CellB "b/2
2
"
b4=/2
2

4Set CellC "c/2
2
"
c4=/2
2

a2=*b2+c2 \# $,0.00;-$,0.00
$63.00

$63.00

	116.49
	116QUOTE

\# $,#.00;-$,#.00;‑
$116.00

	($0.49)
	3

3QUOTE

3SET ColA "A"
A3

3SET ColB "B"
B3

3SET ColC "C"
C3

A3=*B3+C3 \# $,0.00;-$,0.00
$13,512.35

$13,512.35

	5QUOTE
/2
2.5
"
a6=/2
3

6Set CellB "b/2
3
"
b6=/2
3

6Set CellC "c/2
3
"
c6=/2
3

a3=*b3+c3 \# $,0.00;-$,0.00
$13,512.35

$13,512.35

The formulae in Columns D & E show how to implement relative referencing for rows. These formulae work by setting up sequence number bookmarks for each row, and using those to create a cell reference for the remainder of the logic. Either of these allows the formula to be copied down multiple rows, updating row references as it goes. Columns D and E behave differently due to the differences in how they implement row sequencing:

· Column D uses the SEQ field once per cell to get the row reference, then uses the row number indirectly in creating cell references. The downside is that all rows display the same value when the document is opened, since the fields will 'forget' their values when the document is closed. The next time the document is opened, all display the last row’s result. The correct results display immediately the fields are updated, though.

· Column E, on the other hand reuses the SEQ field in each cell, re-creating the row reference for each source cell. To do this, it uses the \c switch to stop multiple SEQ references changing the SEQ No., but it also needs to divide the SEQ No by 2 because of a flaw in the way Word updates SEQ fields when used directly in a cell reference. The advantage is that the cells retain the correct values when the document is closed.

Note: If your data doesn’t start on the first row in the table, you add an offset for each row before the first data row. Thus, if your data starts on the second row, you’d put +1 after each {SEQ Row} in Column D (i.e. {={SEQ Row}+1}) and after each {SEQ RowNr}/2 in Column E (i.e. {SEQ RowNr}/2+1). If the data starts on the third row, you use +2, and so on. Use the same technique to offset the cell referencing by a predetermined number of rows, using negative values to refer to rows above, and positive values to refer to rows below.

Relative referencing does not work for columns.

Testing and Returning Cell Contents in Tables

Formula fields can’t evaluate text strings, including dates and times, at all using table cell references. The only way of doing so is to bookmark the cell’s contents (not the cell itself), and evaluate the bookmark, like:

{IF{BkMrk}= "True Text" "True Response" {=(A2-A1)}}.

To see why you can’t bookmark the whole cell, consider:

	The quick brown fox jumps over the lazy dog.
	Error! Not a valid bookmark self-reference.
	Here the cell marker is included in the bookmark

	The quick brown fox jumps over the lazy dog.
	The quick brown fox jumps over the lazy dog.
	Here the cell marker is excluded from the bookmark

Using the same cross-references from outside the table, you’ll get:
	The quick brown fox jumps over the lazy dog.

and

The quick brown fox jumps over the lazy dog.
Similarly, to test whether cell A1 in a table is empty or has any numeric value other than 0, and evaluate B2-B1 only if TRUE, you could use:

{=IF(A1=0,0,B2-B1)} or {=IF(A1,B2-B1,0)}
For a field that evaluates B2-B1 if A1 has any numeric value including 0, you could use:

{=IF(COUNT(A1)=0,0,B2-B1)}

For purely numeric work, you can use a syntax that mirrors Excel’s (aside from the fact that Word cell references are always absolute and don’t use ‘$’ symbols to indicate this). For example:

{=IF(A1=0,10,B2-B1)}
Things come unstuck using an Excel syntax in a Word table if you want to have a nul result or evaluate a text string. In Excel you'd use:

=IF(A1=0,"",B2-B1)
to return a nul result but, the equivalent field in Word:

{=IF(A1=0,"",B2-B1)}
produces a syntax error. You then need to resort to constructs like:

{IF{=COUNT(A1)}= 0 "" {=(B2-B1)}}
or you could use numeric switch arrangements such as those outlined below.

Note: If you change the font attributes of the true/false responses (eg fore/back colour, bold, etc), the field results will display with those attributes. This can be combined with font attributes for numeric switches (see below).

Reference Table Cells from Outside a Table

Only the following functions can accept references to table cells as arguments from outside that table:
AVERAGE(), COUNT(), MAX(), MIN(), PRODUCT(), and SUM().

When referencing cell values in a table from outside that table, set up a bookmark for the table (Table1, say), then use the a suitable function (even for a single cell) to retrieve the table values (e.g. {=SUM(Table1 C1)} or {=SUM(Table1 A3)+SUM(Table1 B3)}).

This technique can be useful when you need to refer to one or more table values in the document’s text, do math with them or even refer to them in another table.

Note: If you use numbers as the last character in bookmark names, make sure the name includes at least three text characters before the number. Otherwise Word might interpret the bookmark name as a cell reference.

Referencing Row and Column Totals from Outside a Table

To extract a column total from a table, where the last row of the table contains the total, but without needing to know the total’s row number, simply sum the column and divide the result by two (eg: {=SUM(Table1 D:D)/2)}. A similar technique could be used for a row (eg: {=SUM(Table1 3:3)/2)}.

Formatting Numeric Field Results

Handling +ve, -ve and 0 Values

Numeric picture switches control the appearance of formula field calculations. For example \# 0 display’s the field’s result as a number rounded up/down to the nearest integer, whilst \# # acts similarly but displays a space character instead of zero. To display a value with a thousands separator, use a switch like \# ,0, and to display the result to two decimal places, use \# 0.00. Combine these and currency symbols (eg $) as needed. If you omit the numeric picture switch, Word makes its own decisions as to whether to display a calculation’s result as an integer, or to one or two decimal places.

To control how Word displays positive, negative and zero values, you can add a compound numeric picture switch to the field, with each format separated by a semicolon. Numeric picture switches take three arguments: positive values, negative values and zero values, each separated by a semi-colon. If any of these is omitted, the switch for the positive values is used to format the result. If you want negative values to be formatted differently, you can add a second parameter to the switch: (eg \# #;(#)), separating the two with a semicolon. Now, all positive and zero values will be formatted the same as for positive values, and negative values will be enclosed in brackets (in this example, without a minus sign). To hide '0' results in a field, you need three parameters for the switch – even if positive and negative values are displayed the same way. With a numeric switch like \# #;-#;, the second semicolon, with nothing after it, tells Word not to display 0 results. See Columns C‑E in the table under “Relative Referencing In Tables” for examples of this.

You could even use a switch like: \# #;-#;Ø to display “Ø” for zero values (Alt-0216 = Ø) or, indeed, to display different text outputs for positive and negative values too (eg \# “Profit $,0.00;Loss $,0.00;Break Even”). Note the quote marks around the switch coding; required to accommodate the text with spaces. A significant benefit of adding text and/or suppressing zeros this way (instead of using IF tests to output nulls or spaces) is that the field will continue evaluate as a number in other formulae. You can have up to 64 characters between the double-quotes in the field switch.

If you change the font attributes of the numeric switches (eg fore/back colour, bold, etc), the field result will display with those attributes (eg Profit $1.00, Loss $1.00 & Break Even.

Ordinal Numbering

Word numeric fields support an * Ordinal switch (eg {5 * Ordinal} displays 5th), but what if you want the figure to display the 5th to display as 5th? Here are two ways to do it:
945

n5

IFQUOTE,100)>2)*(MOD(14,10)<3)
0
= 1 st th
th

5th
 or 945

n5

IFQUOTE,100)>2)*(MOD(14,10)<3)
0
= 1 st th * Charformat
th

5th

Expressing Numbers as Words

Sometimes, you’ll want to express a field’s result in Words. Microsoft provides two field switches for this: * CardText; and * DollarText. For example:

one hundred twenty-three thousand four hundred fifty-six
one hundred twenty-three thousand four hundred fifty-six and 78/100
Both switches are limited to values less than 1,000,000.

As you can also see, Microsoft’s ‘DollarText’ switch also doesn’t express a value as ‘X dollars and Y cents’ – it returns ‘X and Y/00’. Here’s a more sophisticated approach:

999,999.99QUOTE "nine hundred ninety-nine thousand nine hundred ninety-nine dollar0.99s

IF> 0 " and ninety-nine cents"
 and ninety-nine cents
"
nine hundred ninety-nine thousand nine hundred ninety-nine dollars and ninety-nine cents
.

999,999,999.99QUOTE
999,999,999.99

999,999,999.99SET AbsAmt
999,999,999.99IF< 0 "Minus "

9IF<> 0 "nine hundred "
nine hundred

99IF <> 0 "9IF<> 0 "and "
and
"
and

999IF<> 0 "ninety-nine million, "
ninety-nine million,

9,999IF<> 0 "nine hundred "
nine hundred

!Undefined Bookmark, ABSAMT100IF <> 0 "9,999IF<> 0 "and "
and
"
and

999,999IF<> 0 "ninety-nine thousand, "
ninety-nine thousand,

9IF<> 0 "nine hundred "
nine hundred

99IF<> 0 "9,999,999IF<> 0 "and "
and

=MOD(INT(AbsAmt),100) *Cardtext
ninety-nine
 "
and ninety-nine

999,999,999dollar

IF> 1 "s"
s

0.99IF<> 0 "999,999,999IF<> 0 " and "
 and

=MOD(AbsAmt,1)*100 *Cardtext
ninety-nine
 cent0.99IF> 0.01 s
s
"
 and ninety-nine cents
 * FirstCap
Nine hundred and ninety-nine million, nine hundred and ninety-nine thousand, nine hundred and ninety-nine dollars and ninety-nine cents
.

Note: In addition to going well beyond the normal CardText and DollarText limits, the second field includes ‘and’ where required for UK/Australian English.

Expressing Numbers as Numbers and Fractions

Sometimes, you’ll want to express a field’s result in numbers and fractions. The following field code does that for any possible denominator from 2 to 10.
1.3333333333330.6666666666667

0.6666666666667

SET Den 1.666666666666666666

SET Frac QUOTE=INT(1.333333333333)
0
= 1 2 2.000000000000IF=INT(2.000000000000)
1
= 1 3 1.000000000000IF=INT(1.000000000000)
3
= 1 4 1.000000000000IF=INT(1.000000000000)
3
= 1 5 1.000000000000IF=INT(1.000000000000)
3
= 1 6 1.000000000000IF=INT(1.000000000000)
3
= 1 7 1.000000000000 IF=INT(1.000000000000)
3
= 1 8 1.000000000000 IF=INT(1.000000000000)
3
= 1 9 10
10

10

10

10

10

10

3

3

3
"1.6666666666667=INT(Val) \# "0'> 1 " "

';;"
1
1IF<> 1.666666666666666666 "2/3"
2/3
"
1 2/3

Of course, if you have only one denominator to work with, it’s much simpler. The following field code expresses the decimal part of a number in eighths:
0.8750000000000

0.87500000000000.875

SET Frac QUOTE"1.6666666666667=INT(Val) \# "0'> 1 " "

';;"

=8*Frac \# 0
7
/8"
7/8

Rounding Numbers to the Nearest Multiple

Word’s ROUND function can be used to round a value to the nearest multiple of a number. For example: {=ROUND((SUM(5,6,7)/5,0)*5} rounds to 20, the nearest multiple of 5 for SUM(5,6,7) = 18.

Rounding Numbers Up or Down

Word’s formula field includes a ROUND function, but lack a ROUNDUP or ROUNDDOWN function. To overcome this, you can use a formula like:
{=INT(SUM(5.5,6.6,7.7)+IF(MOD(SUM(5.5,6.6,7.7),1)>0,1,0))} = 20 to round up, or:
{=INT(SUM(5.5,6.6,7.7))} = 19 to round down.

To round up/down to the nearest multiple of a number (eg 5), you can use a formula like:
{=INT(SUM(5.5,6.6,7.7)/5+IF(MOD(SUM(5.5,6.6,7.7),5)>0,1,0))} = 20 to round up, or:
{=INT(SUM(5.5,6.6,7.7)/5)*5} = 15 to round down.

Even Rounding

Word’s formula field also lacks a ROUNDEVEN function, which is sometimes used in financial circles to counter the cumulative effect of 0.5 units being rounded up. To overcome this, you can use a formula like:
{=ROUND(5.5)-(MOD(5.5,0.5)=0)*(MOD(ROUND(5.5,0),2)>0)/2,0)} = 6 (as usual)
and
{=ROUND(6.5)-(MOD(6.5,0.5)=0)*(MOD(ROUND(6.5,0),2)>0)/2,0)} = 6 (instead of 7).

This gives a rounding sequence of 0.5:0, 1.5:2, 2.5:2, 3.5:4, etc

To round evenly to the nearest multiple of a number (eg 5), you can use a formula like: {=ROUND(55-(MOD(55,5)=0)*(MOD(ROUND(55,-1),20)>0)/2,-1)} = 60 (as usual)
and
{=ROUND(65-(MOD(65,5)=0)*(MOD(ROUND(65,-1),20)>0)/2,-1)} = 60 (instead of 70).

This gives a rounding sequence of 5:0, 15:20, 25:20, 35:40, etc

Parse Numbers Separated by +, -, / or : Characters

In Word, using fields to manipulate hyphenated numbers (eg phone numbers or social security numbers) is complicated by the way fields treat such numbers as arithmetic expressions. For example, the field 123-45-6789 is treated as 123 minus 45 minus 6789, which equals -6711. Despite this, you can use maths on such fields to retrieve the component parts of the numbers, as in: 123-45-6789123-45-6789

SET EXP1QUOTE-ID
-246
/2
123

123

SET EXP2123-45-6789=-(*(-1)-123-45-6789)/2
45

45

SET EXP3123-45-6789=(*(-1)-ID)/2
6789

6789

ID
123-45-6789

123-45-6789
 is made up of 123, 45 and 6789.

For numbers separated by + signs, only minor changes to the formula are needed: 123+34+5678123+34+5678

SET EXP1QUOTE-ID
-246
/2
123

SET EXP2123+34+5678=(*(-1)-123+34+5678)/2
34

34

123

SET EXP3123+34+5678=-(*(-1)-ID)/2
5678

5678

ID
123+34+5678

123+34+5678
 is made up of 123, 34 and 5678.

For numbers where the first part is surrounded by brackets (eg area codes that prefix phone numbers), you could use something based on: (12)-3345-6789(12)-3345-6789

SET EXP1QUOTE
-ID
24
/2
12

SET EXP2(12)-3345-6789=-(*(-1)-(12)-3345-6789)/2
3345

3345

12

SET EXP3(12)-3345-6789=(*(-1)-ID)/2
6789

6789

ID
(12)-3345-6789

(12)-3345-6789
 is made up of 12, 3345 and 6789. Alternatively, it could be represented as: (12)-3345-6789QUOTE
-ID
24
/2
12

12

SET EXP2(12)-3345-6789=-(*(-1)-(12)-3345-6789)/2
3345

3345

SET EXP33345=-(-12-(12)-3345-6789)
6789

6789

EXP1 \# (00)
(12)

(12)
, 3345 and 6789.

Note: The above fields use numeric picture switches to retain leading 0s when the parsed numbers are displayed.

These techniques will not work on values separated by spaces (“ ”), colons (“:” ‑ used for times) or slashes (“/” ‑ used for dates). However, there are ways of processing dates and times. For example, to calculate the average time taken by a number of people to do something when the total time is expressed in hours, minutes & seconds, one might use a field coded like:
05:35:005:35

ASK TotalPeople 55

SET HRS QUOTE \@ "HH"
05

05

SET MINS 05:35:00QUOTE \@ "mm"
35

35
05:35:00SET SECS \@ "ss"
00

00
05SET Duration =05+35+00= \# 0
40
 300 20100

20100

20100"5=INT(Duration/3600/) \# 00
01
:5=MOD(Duration/60/,60) \# 00
07
:5=MOD(Duration/,60) \# 00
00
"
01:07:00

Being able to parse data this way can be useful in a mailmerge where, if you’re using formatted sensitive data (eg US Social Security Numbers and telephone numbers) and only want to include part of it (eg the last 4 digits), you can use something like:

«ClientRef»

«ClientRef»QUOTE

«ClientRef»SET EXP3*(-1)-ID)/2
!Syntax Error, «

!Syntax Error, «
"XXX-XX-"!Syntax Error, «

XXX-XX-!Syntax Error, «
where ‘ClientRef’ is the datasource field name.

A similar approach can be taken with US Zip Codes, without having to know in advance how they’re formatted. With the field coding below, the data source could have any combination of 5-digit, 5+4-digit formatted, 5+4-digit unformatted (ie 9 digit) and 5-digit followed by “-0000” or “--000” (which allows for systems that are unable to differentiate between 5-digit and 5+4-digit formatted zip codes):

«ZipCode»

«ZipCode»QUOTE

«ZipCode»IF> 99999 «ZipCode»12345-6789

12345-6789

"SET Zip -Zip
!Syntax Error, «
/2 \# 00000;;
!Syntax Error, !

=-(«ZipCode»*(-1)-Zip)/2 \# ;-0000;
!Syntax Error, «
"
!Syntax Error, !!Syntax Error, «

Note: A syntax error occurs with the previous two fields because they’re designed for use in a mailmerge main document, which this document isn’t.

Scientific Notation

Word’s formula field doesn’t include a scientific notation function. To overcome this, you can use a formula like:

0.001QUOTE

0.001

0.001SET a
-3

-3SET b
1

1SET c
"0.001 in scientific notation form is 1.00E-03."
0.001 in scientific notation form is 1.00E-03.

Logarithms

Word’s formula field also doesn’t include a logarithm function. To overcome this, you can extend the above scientific notation function by adding a Taylor Series approximation to generate quite accurate results:

0.301029995663981QUOTE

0.477121254719662
0.698970004336019
0.845098040014257
0.0413926851582251
0.113943352306837
0.230448921378274
0.278753600952829
3.16227766016838
3.1622776601684

3.1622776601684SET a
0

0SET b
3.1622776601684

3.1622776601684SET c
0.4771212547197

0.4771212547197SET d
0.1622776601681

0.1622776601681SET e
0.5

0.5SET f
"The logarithm of 3.1622776601684 is 1IF= a "" "approximately "
approximately

f
0.5
."
The logarithm of 3.1622776601684 is approximately 0.5.

As coded, the field gives valid results for values between 10^-9 and 10^9 to 13 decimal places, which should be enough for most purposes. If you need to calculate the logs of larger/smaller values, increase the values in parameter ‘b’ (the exponent) accordingly.

Note: Although not implemented in this document, references to constants in tables or bookmarks (as in the SET fields used here to define certain logarithmic values) need only be established once for the whole document.

Trigonometry

Word’s formula field also doesn’t include trigonometric functions, such as Sine, Cosine and Tangent. Again, you can use Taylor Series approximations to generate quite accurate results (to 13 decimal places):

	Angle
	Sine
	Cosine
	Tangent

	45

Ø45

45QUOTE
	0.7853981633974

0.7853981633974xQUOTE

0.7071067811865

0.7071067811865SET SinØ
0.707107

0.707107
	0.7853981633974

0.7853981633974QUOTE

0.7071067811866

0.7071067811866SET CosØ
0.707107

0.707107
	0.7853981633974

0.7853981633974xQUOTE

0.9999999999999

0.9999999999999SET TanØ
0IF= 1 "Infinite" 1.000000

1.000000

1.000000

To update, select the table and press F9 to input an angle.

Calculate Horizon Distances Using Word Fields

The following fields return the distance to the horizon from a given altitude (provided you’re at or above the horizon level) – no trigonometry required:

1.75QUOTE

0
4.7208

4.7208SET horizon
"For an observer at1.75IF= 0 "" " an altitude of 1.75=IF(>50,2,1.75)

1.75 metre1.75IF= 1 "" "s"
s
 "
 an altitude of 1.75 metres

=observer \# above;below;
above
 sea level, for whom the horizon is0IF= 0 "" " 2=IF(abs()>50,2=abs() \# ,0
2
,2=abs() \# ,0.00)
2.00)

2
 metre2IF= 1 "" "s"
s
"
 at sea level, the horizon is 4.7208IF= 0 "" "about "
about

=IF(4.7208>100,5,4.721)
4.721
km distant."
For an observer at an altitude of 1.75 metres above sea level, for whom the horizon is at sea level, the horizon is about 4.721km distant.

5.75QUOTE

0
2.93556

2.93556SET horizon
"For an observer at5.75IF= 0 "" " an altitude of 5.75=IF(>50,6,5.75)

5.75 5.75IF= 1 "foot" "feet"
feet
 "
 an altitude of 5.75 feet

=observer \# above;below;
above
 sea level, for whom the horizon is0IF= 0 "" " 1=IF(abs()>50,1=abs() \# ,0
1
,1=abs() \# ,0.00)
1.00)

1
 1IF= 1 "foot" "feet"
foot
"
 at sea level, the horizon is 2.93556IF= 0 "" "about "
about

=IF(2.93556>100,3,2.936)
2.936
miles distant."
For an observer at an altitude of 5.75 feet above sea level, for whom the horizon is at sea level, the horizon is about 2.936miles distant.

Financial Calculations

Financial Calculation Algorithms

The financial formulae fields below each solve one financial argument (PV, FV, PMT, NPER) in terms of the others, using:
(pmt*nper)+pv+fv = 0 if the rate is 0, and
pv*((1+rate)^nper)+pmt*(1+rate*type)*((1+rate)^nper-1)/rate+fv = 0 otherwise, where:

· pv
is the present value of a loan or investment, and represents the current value of a series of future payments. For example, when you borrow money, the amount you owe is the present value to the lender.

· fv
is the future value, or a cash balance of the loan or investment after the last payment is made. For example: you open a savings account that earns 6%pa interest compounding monthly for a special project, the account matures in a year from now, the initial deposit is $2,000 and you deposit a further $150 at the beginning of every month for the next 12 months. In one year the account will have a balance of $+5,222.67.

· rate
is the interest rate per period. For example, if you borrow money at 10%pa interest, compounding monthly, your monthly interest rate is (10/12)% = 0.8333%. The fields require only the annual rate of interest to be input: 12 interest periods pa are assumed, but you can change that, if necessary, by editing the fields.

· nper
is the total number of payment periods over the life of the loan or investment. For example, a five-year loan paid monthly has 5*12 = 60 periods. The pv and fv fields require only the number of years to be input: 12 payments pa are assumed, but you can change that, if necessary, by editing the fields.

· pmt
is the fixed instalment paid in each period. The instalment amount usually includes components to cover both principal and interest but may not include loan fees etc. For example, the monthly instalment on a $25,000, four-year loan at 13.5% per annum interest is $-676.91, plus any fees & taxes. The result is negative because it represents money you would pay (i.e. a negative cash flow).

· type
is the number 0 or 1 and indicates when instalments are paid. 0 indicates payments are made at the end of the period, 1 indicates payments are made at the start of the period. Equally, some loans charge interest on the basis of the amount outstanding at the beginning of the period, whilst others charge interest on the basis of the amount outstanding at the end of the period.

Solving for the future value, the formula is:
fv=-if(rate=0,pmt*nper+pv,(pv*((1+rate)^nper)+pmt*(1+rate*type)*((1+rate)^nper-1)/rate)).
Solving for the present value, the formula is:
pv=-if(rate=0,pmt*nper+fv,(fv+pmt*(1+rate*type)*((1+rate)^nper-1)/rate)/((1+rate)^nper)).
Solving for the payment value, the formula is:
pmt=-if(rate=0,(pv+fv)/nper,(pv*((1+rate)^nper)+fv)/((1+rate*type)*((1+rate)^nper-1)/rate)).
Solving for the number of periods, the formula is:
nper=-if(rate=0,(pv+fv)/pmt,(log(1+(pv+pmt*type)/pmt*rate)-log(1+(fv+pmt*type)/pmt*rate))/log(1+rate)).
Solving for the interest rate, the formula is:
rate=(fv/pv)^(1/nper)-1
if pmt is 0. Otherwise, you can only solve for the interest rate through iteration (eg using one of the above formulae).

Basic Financial Calculation Fields

Basic FV field: 0QUOTE

0
0.000000000000

0.000000000000SET rate
0
1
12

12SET nper
1
0.00

0.00SET fv
Basic PV field: 0QUOTE

0
0.000000000000

0.000000000000SET rate
0
1
12

12SET nper
0
0.00

0.00SET pv
Basic PMT field: 0QUOTE

0
0
0.000000000000

0.000000000000SET rate
1/12
1

1SET nper
0
0.00

0.00SET pmt
Basic NPER field: 0QUOTE

0
1
0
0.000000000000

0.000000000000SET rate
0
0
0

0.301029995663981
0.477121254719662
0.698970004336019
0.845098040014257
0.0413926851582251
0.113943352306837
0.230448921378274
0.278753600952829

1

1SET a
0

0SET b
1

1SET c
0.0

0.0SET d
0.0

0.0SET e
0.0

0.0SET f

1

1SET a
0

0SET b
1

1SET c
0.0

0.0SET d
0.0

0.0SET e
0.0

0.0SET g

1

1SET a
0

0SET b
1

1SET c
0.0

0.0SET d
0.0

0.0SET e
0.0

0.0SET h

0.00000000

0.00000000SET nper
Note: The NPER field requires logarithms and, so, employs field coding developed for the logarithm example. It takes up a whole page to implement!

Interactive Worked Examples

Suppose you're approaching retirement and you want to buy a superannuation annuity that will pay $750 per month at the end of every month for the next 15 years. The cost of the annuity is $75,000, and the money used to buy it could otherwise earn 8%pa interest, compounding monthly. Using these parameters and the PV field, you find that the present value of the annuity is: 0QUOTE

8
0.006666666667

0.006666666667SET rate
750
15
180

180SET nper
0
-78480.444115541

-78480.444115541

pv \# $,0.00;$‑,0.00;0.00$‑78,480.44

$‑78,480.44SET pv. Since the present value of the annuity ($78,480.44) is more than its purchase price ($75,000) this would be a good investment. Looked at as a loan from the annuity provider, the annuity costs you 75000QUOTE

0
8
0.006666666667

0.006666666667SET rate
15
180

180SET nper
0
-716.73906326508

-716.73906326508

pmt \# $+,0.00;$‑,0.00;0.00$‑716.74

$‑716.74SET pmt per month, compared to the $750 per month you’ll receive for 78480.44QUOTE

0
8
0.006666666667

0.006666666667SET rate
-750
0

0.301029995663981
0.477121254719662
0.698970004336019
0.845098040014257
0.0413926851582251
0.113943352306837
0.230448921378274
0.278753600952829

0.302396088854

0.302396088854SET a
-1

-1SET b
3.02396088854

3.02396088854SET c
0.4771212547197

0.4771212547197SET d
0.002396088854

0.002396088854SET e
-0.5194238302347

-0.5194238302347SET f

1

1SET a
0

0SET b
1

1SET c
0.0

0.0SET d
0.0

0.0SET e
0.0

0.0SET g

1.006666666667

1.006666666667SET a
0

0SET b
1.006666666667

1.006666666667SET c
0.0

0.0SET d
0.006666666667

0.006666666667SET e
0.002885688237632

0.002885688237632SET h

179.99998179323

179.99998179323

nper \# +,0.0000;‑,0.0000;0.0000+180.0000

+180.0000SET nper months, instead of for only 75000QUOTE

0
8
0.006666666667

0.006666666667SET rate
-750
0

0.301029995663981
0.477121254719662
0.698970004336019
0.845098040014257
0.0413926851582251
0.113943352306837
0.230448921378274
0.278753600952829

0.3333333333

0.3333333333SET a
-1

-1SET b
3.333333333

3.333333333SET c
0.4771212547197

0.4771212547197SET d
0.0333333333

0.0333333333SET e
-0.4771212547642

-0.4771212547642SET f

1

1SET a
0

0SET b
1

1SET c
0.0

0.0SET d
0.0

0.0SET e
0.0

0.0SET g

1.006666666667

1.006666666667SET a
0

0SET b
1.006666666667

1.006666666667SET c
0.0

0.0SET d
0.006666666667

0.006666666667SET e
0.002885688237632

0.002885688237632SET h

165.3405411375

165.3405411375

nper \# +,0.0000;‑,0.0000;0.0000+165.3405

+165.3405SET nper months. The residual future value of the investment is thus -75000QUOTE

8
0.006666666667

0.006666666667SET rate
750
15
180

180SET nper
0
-11509.555397294

-11509.555397294

fv \# $+,0.00;$‑,0.00;0.00$‑11,509.56

$‑11,509.56SET fv, and represents how much less income you would earn by investing the $75,000 at 8%pa instead of investing the $78,480.44 that the annuity is worth.

75000QUOTE

0
8
0.006666666667

0.006666666667SET rate
-750
0

0.301029995663981
0.477121254719662
0.698970004336019
0.845098040014257
0.0413926851582251
0.113943352306837
0.230448921378274
0.278753600952829

0.3333333333

0.3333333333SET a
-1

-1SET b
3.333333333

3.333333333SET c
0.4771212547197

0.4771212547197SET d
0.0333333333

0.0333333333SET e
-0.4771212547642

-0.4771212547642SET f

1

1SET a
0

0SET b
1

1SET c
0.0

0.0SET d
0.0

0.0SET e
0.0

0.0SET g

1.006666666667

1.006666666667SET a
0

0SET b
1.006666666667

1.006666666667SET c
0.0

0.0SET d
0.006666666667

0.006666666667SET e
0.002885688237632

0.002885688237632SET h

165.3405411375

165.3405411375SET nper"A loan or investment with a present value of $+75,000.00, an anticipated future value of $0.00, attracting an interest rate of 8%pa, will last for +165.3405 months if payments of $‑750.00 are made at the 0IF= 1 "start" "end"
end
 of each month."
A loan or investment with a present value of $+75,000.00, an anticipated future value of $0.00, attracting an interest rate of 8%pa, will last for +165.3405 months if payments of $‑750.00 are made at the end of each month.

Note: When using these formulae, it is important to correctly indicate the cash-flow direction with +/- signs.

2018QUOTE 11 169 160 109 97 99 114 111 112 111 100 160 50 48 48 52 45 11

© macropod 2004-2018

� Note: When you close Word, you may be asked whether to save changes to ‘Normal.dot’ after doing this. If you want the macro to be available for the future, answer ‘Yes’.

